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Theory of photorefractive vectorial wave coupling in cubic crystals
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We present an analytical theory of vectorial wave coupling in photorefractive cubic crystals which are, in
general, optically active. The theory is based on the systematic use of the spatial symmetry properties and the
apparatus of the Pauli operators to deal with two-dimensional vectors and matrices. It allows one to give a
unified description of a wide spectrum of photorefractive phenomena, including the efficiency and polarization
properties of Bragg diffraction, polarization two-beam coupling enhanced by ac fields, the influence of the
photoelastic effect, etc. Applications of the theory to crystals of the sillenite family and to particular photore-
fractive phenomena are given. A good qualitative agreement between the theoretical predictions and experi-
mental data for Bi12TiO20 ~BTO! crystals is shown.@S1063-651X~99!12209-8#

PACS number~s!: 42.70.Nq, 42.65.Hw
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I. INTRODUCTION

Photorefractive nonlinear wave coupling has been
subject of many studies@1–3#. Usually the strongest photo
refractive optical nonlinearity and, correspondingly, t
strongest wave interactions occur in photorefractive fer
electrics, which are highly anisotropic. The wave surfaces
two light eigenmodes~often ordinary and extraordinar
waves! are well separated here inkW space. For this reason
wave interactions in ferroelectrics may succesfully be
scribed by coupled equations for the scalar wave amplitu
The polarization properties of the wave coupling are u
coupled here from the effects of energy and phase excha

Unfortunately, the photorefractive response of ferroel
trics is not sufficiently fast for optical applications. Muc
effort has been made to find faster photorefractive mater
@1–3#. Nowadays, cubic crystals of the sillenite fami
@Bi12SiO20 ~BSO!, Bi12TiO20 ~BTO!, and Bi12GeO20
~BGO!# meet the necessary requirements most fully. In
absence of applied electric fields these materials are optic
isotropic and optically active.

Two techniques~dc and ac! have been proposed to en
hance the value of the photorefractive response in sillen
@4,5#. Both of them exploit applied electric fields. In the d
case this field is constant and the interacting light waves
slightly shifted in frequency from each other. In the ac ca
which is proven to be most useful, an applied field oscilla
in time and no frequency shift is needed between the li
waves. The efficiency of the ac technique depends on
temporal profile of the applied field@6#. The best enhance
ment corresponds to a square-wave profile when the ac
changes its sign periodically.

Considerable progress in improving the photorefract
characteristics of sillenites has been made several years
@7,8#. The fabrication of thin and long~fiberlike! BSO and
BTO crystals has allowed an increase in the amplitude of
PRE 601063-651X/99/60~3!/3332~21!/$15.00
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ac field up to 50 kV/cm, a decrease in the response tim
cw experiments to microseconds, and a demonstration
variety of strong nonlinear effects relevant to applicatio
such as fast phase conjugation@9#, generation of surface ligh
waves@10,11#, and time separated recording and readout p
cesses@12#.

The main problem and the main specific features in
scribing the photorefractive wave coupling in cubic cryst
is the vectorial character of the interaction. The distance
tween the wave surfaces inkW space that corresponds to tw
eigenwaves~elliptically polarized in the presence of an a
plied electric field! is considerably smaller here than in fe
roelectrics. For this reason, the energy and polarization
change between light waves cannot generally be held a
and, correspondingly, the vectorial wave coupling cannot
reduced to the scalar one. The proximity of the wave s
faces, together with the specific features of the electro-o
effect in cubic crystals, also means that the wave couplin
highly sensitive to the input wave polarizations, to the crys
cut, to the applied field, etc. A wealth of strong nonline
phenomena, a high spatial symmetry, and an apparent
plicity of formulation of the nonlinear problems is a cha
lenge for theorists in the field of photorefraction.

The theoretical description of the photorefractive nonl
ear phenomena in cubic crystals, in general, and in the s
nites, in particular, remains, is spite of a great number
publications, very fragmental; at present it does not meet
requirements for experiment. The essence of the theore
studies performed may be sketched as follows.

A considerable number of papers has been devoted to
analysis of vectorial wave coupling via a spatially unifor
grating of the space-charge field@12–17#. The results ob-
tained have shown the importance of the polarization deg
of freedom and the orientation of the grating fringes ab
the crystal axes for optimization of the readout proce
Many of the above papers use various approximations
numerical methods to solve the vectorial Bragg-diffracti
3332 © 1999 The American Physical Society
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PRE 60 3333THEORY OF PHOTOREFRACTIVE VECTORIAL WAVE . . .
problem. It has become clear only recently@16,17# that this
problem can be solved exactly in the paraxial limit. In a
event, the assumption of a uniform grating cannot be app
to the cases of strong energy and polarization exchange
tween the interacting light beams.

The effects of weak two-wave~2W! coupling have been
considered in Refs.@18–20# using the approximation of a
thin crystal. The corresonding results can be applied t
restricted set of experimental data related to the cases o
enhancement of the photorefractive response.

Various aspects of the problem of enhancement of
photorefractive response in cubic crystals have been con
ered in Refs.@4–6,21,22#. The effects of the energy and po
larization exchange between the light beams were outside
main line of these studies.

Much effort has been made to describe the additio
nonelectro-optic contribution to the photorefractive respo
caused by the elasto-optic effect@23–29#. The obtained re-
sults now allow one to characterize fairly well the photo
fractive nonlinearity for various optical configurations a
polarizations of the light waves.

There is quite a number of recent publications aimed
the analysis of strong nonlinear effects caused by the
hanced photorefractive response@10,30–33#. Unfortunately,
the authors of these papers usually restrict themselves
formulation of the initial self-consistent equations for wa
amplitudes and to particular numerical solutions for the
equations. The corresponding numerical results give no g
eral insight into the nonlinear phenomena under study. Mo
over, the initial equations often do not include details ess
tial for wave coupling, such as the effect of the polarizati
switching on the grating amplitude and the elasto-optic
fect. A part of the numerical results obtained is outside
field of applicability of the starting equations.

Finally, we mention the papers devoted to the solution
the nonlinear equations for wave coupling in cubic cryst
without optical activity as applied to the case of dominati
diffusion transport@34,35#. This particular case admits
quite comprehensive analytical treatment, however, it
nowadays mainly of academic interest in view of the we
ness of the diffusion mediated photorefractive response.

In this paper we are making an attempt to lay the foun
tion of an analytical theory of the vectorial wave coupling
cubic photorefractive crystals that are, in general, optica
active. The distinctive features of the proposed theory ar
follows.

~i! The theory incorporates uniformly all main aspects
2W coupling: readout, including the effect of optoelastici
recording, including the enhancement factors; arbitrary
entations of the grating vector and applied field; etc.

~ii ! We systematically exploit the properties of spat
symmetry of cubic crystals; this imparts additional genera
to the theoretical conclusions and makes them as free
possible from model assumptions.

~iii ! We use the apparatus of Pauli matrices to deal w
two-dimensional vectors and matrices. The introduction
the Pauli matrices greatly simplifies the structure of the v
torial equations and makes the calculation procedures e

~iv! We analyze in detail possible approximations for t
nonlinear wave equations, as well as the field of applicabi
of the obtained results.
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~v! The theory is open for further development; depriv
of the possibility to exhaust particular results, we often in
cate the way to obtain them. As usual, we restrict oursel
the paraxial approximation which is well justified for mo
experiments.

The structure of the paper is the following. In Sec. II w
provide the reader with background information on the op
cal permittivity of cubic crystals, including optical activity
light absorption, and the linear electro-optic and elasto-op
effects. Then we derive a system of coupled vectorial eq
tions for the wave amplitudes that describes the linear pro
gation and the mutual Bragg diffraction from a light-induc
space-charge grating. The coupled wave equations inc
the minimum number of phenomenological parameters c
sistent with the spatial symmetry. In Sec. III we specify t
above phenomenological parameters for two general op
configurations and consider the equivalent geometries a
number of important particular cases. The information p
sented here is sufficient for the description of most confi
rations relevant to experiment. Section IV is devoted to
summary of the linear properties of light waves in cub
crystals that are necessary for the subsequent theoretical
siderations. These properties include the effect of an app
field on the polarization properties of the eigenmodes and
the structure of the corresponding wave surfaces. In Sec
we give an exact solution of the Bragg-diffraction proble
considering the amplitude of the space-charge grating a
constant. We then apply our results to describe the g
readout pulses during the switching of an applied field; th
pulses have been detected recently in ac experiments
BTO crystals@12#. In Sec. VI we describe the photorefra
tive response of a crystal as applied to two main limiti
cases: to the case of diffusion charge transfer and to the
of an applied square-wave field. The obtained explicit re
tions for the grating amplitude enable us to formulate
closed set of vectorial nonlinear equations for each of
above types of the photorefractive two-wave coupling.
Sec. VII we discuss the approximations appropriate for
diffusion and ac cases, obtain the corresponding simpli
equations and solutions for the wave amplitudes, and ana
the polarization properties of the energy exchange. Sec.
is devoted to applications of the obtained general results
description of the angular and polarization dependence
the rate of spatial amplification in BTO crystals, and to
comparison between theory and experiment. A compari
of the main theoretical predictions for BTO crystals wi
experiment is made in Sec. IX. In Sec. X we discuss
merits of the developed theory and the prospects for its
ther development and application. The conclusions
drawn in Sec. XI.

II. BASIC RELATIONS

A. Optical permittivity

The known cubic photorefractive crystals belong to po
symmetry group 23~BSO,BTO,BGO, . . . ! and 4̄3m ~GaAs,
CdTe,InP, . . . !. In the absence of an electric field these cry
tals are optically isotropic. This isotropy may, however, c
exist with optical activity; this is the case for group 23. Th
electro-optic properties of the above cubic crystals are u
form in symmetry.
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3334 PRE 60B. I. STURMAN et al.
For a light wave with wave vectorkW the optical permit-
tivity tensor (e i j ) of a cubic crystal, subject to an electr
field EW , can be presented in the form

e i j 5n0
2~11 i a k21! d i j 12i r n0

2 k22 d i j l kl1de i j ~EW !,
~1!

where n0 is the refractive index,a is the light absorption
coefficient,r is the rotatory power,d i j is the unit second
rank tensor, andd i j l is the unit antisymmetric third rank
tensor. The Latin subscripts hereafter denote Cartesian c
ponents and repeated components in the products’ m
summation overx, y, and z. The first two terms in Eq.~1!
describe the optical permittivity in the absence of any el
tric field. The components of the isotropic tensorsd i j andd i j l
are the same in each Cartesian coordinate system. The
tive sign ofr corresponds to the corkscrew rule for the r
tation of the polarization plane. In crystals of point gro
43m the optical activity is absent,r50.

The last term in Eq.~1! describes the linear effect of th
electric fieldEW on the optical permittivity. This term is wor
thy of special attention. It has been supposed initially that
effect of the electric field is reduced to the so-called line
electro-optic effect, i.e.,

de i j ~EW !52n0
4 r i j l El , ~2!

wherer i j l is the electro-optic third rank tensor. This tensor
real and symmetric in the first two indices; in crystals
point group 4̄3m and 23, it is characterized by only on
independent component,r 41, and may be presented as

r i j l 5r 41 pi j l
(0) , ~3!

wherepi j l
(0) is the normalized electro-optic tensor. This tens

is not isotropic; its components look especially simple in
crystallographic coordinate system,

pi j l
(0)5ud i j l u. ~4!

However, it has become clear about ten years ago@23–25#
that the dependencedê (EW ) ~we use hereafter the sign ‘‘hat’
to mark tensors and matrices! is not described fully by Eq.
~2!. The point is that the so-called elasto-optic effect can a
contribute. The scheme of this additional influence is as
lows. The electric field produces a stress inside the cry
owing to the piezoelectric effect and this stress results
turn, in an independent contribution todê. This contribution
includes the elasto-optic and piezoelectric coefficients,
well as the elasticity moduli.

The procedure of how to calculate the elasto-optic con
bution is described in detail in Refs.@23–28#. In this paper
we are merely interested in a simple and effective use of
accumulated results for the description of photorefract
wave mixing. To perform this program we assume that
electric fieldEW consists of a uniform part,EW 0, and a spatially
oscillating part,

EW 5EW 01EW KW eiKW •rW1EW KW
* e2 iKW •rW, ~5!
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whereKW is the grating vector,EW KW is the complex vectorial
grating amplitude, and the asterisk stands for the comp
conjugate. Using the linearity of the effect of the elect
field on dê, we have

dê ~EW !5dê ~EW 0!1@dê ~EW KW ! eiKW •rW1c.c.#. ~6!

It is essential that the dependencesdê (EW 0) anddê (EW KW ) are
generally different. Since the uniform fieldEW 0 does not pro-
duce any stress in an unclamped crystal, we can write for
most actual case,

de i j ~EW 0!52n0
4 r 41E0Hi j

(0) , ~7!

where Hi j
(0)5H ji

(0)5pi j l
(0)nl

0 , E0 is the amplitude of the ap

plied field, andnW 0 is the unit vector indicating the orientatio
of EW 0. In the case whenEW 0 does not depend ont, the vector
nW 0 is defined uniquely,nW 05EW 0 /E0. In the ac case, when
EW 0(t) changes its sign periodically, the vectornW 0 is defined
except for the sign; any choice fornW 0 leads to the same
physical results.

The spatially oscillating field indeed produces a stress
side the crystal and this stress depends on the orientatio
the vectorEW KW . This vector can, in turn, be written asEW KW

5nW EKW , where EKW is the scalar grating amplitude andnW

5KW /K is the unit grating vector. Then, for the tensorial am
plitude dê (EW KW ), we can write

de i j ~EW KW !52n0
4 r 41EKW Hi j , ~8!

whereHi j is a tensor including the electro-optic and elas
optic contributions. This tensor is also real and symmetric
the indicesi and j. As a rule, the elasto-optic contribution t
Ĥ does not exceed the electro-optic one; hence the elem
of the tensorĤ are quantities comparable with or less th
one. These quantities are functions ofnW and are known for
the main optical configurations relevant to experiment;
also Sec. III. With the elasto-optic contribution neglected
obviously haveHi j 5pi j l

(0)nl . Note that the vectornW is not

generally parallel tonW 0 although, for experiments with exter
nal light beams, usuallynW inW 0.

Thus the elasto-optic effect renormalizes the electro-o
tensor and this renormalization depends in a known way
the orientation of the grating vector. The field-induc
change of the optical permittivity is always anisotropic.

Table I gives representative optical constants for BTO a
BSO crystals. These parameters will be used in the follow
numerical estimates.

B. Two-wave coupling via a space-charge grating

1. Usual representation

Let two light waves, 1 and 2, of the same frequencyv be
incident onto theXY plane of a crystal. The correspondin
electric light field,EW, inside the crystal may be presented

EW5~AW 1 eikW1•rW1AW 2 eikW2•rW! e2 ivt1c.c., ~9!
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PRE 60 3335THEORY OF PHOTOREFRACTIVE VECTORIAL WAVE . . .
where the wave amplitudesAW 1,2 are slowly varying functions
of the propagation coordinatez and the timet; the lengths of
the wave vectors,k1,2, are equal tok5vn0/c (c is the light
velocity!. The angles between the wave vectorskW1,2 and thez
axis are supposed to be small, which holds true for m
photorefractive experiments. Within such a paraxial appro
mation the amplitudesAW 1,2 may be treated as two
dimensional~2D! vectors withx,y components.

The wave vectors’ differenceKW 5kW12kW2 is nothing else
than the grating vector of the light-induced spatial gratin
This vector and the vectorEW 0 are supposed to have arbitra
orientations in theXY plane.

Using Eqs.~1!, ~6!, and~8!, and the notation introduced i
the paraxial approximation, one can obtain from Maxw
equations the following coupled system for the vector
wave amplitudesAW 1,2,

S ]

]z
1

a

2 DAW 12 i Ĝ AW 15 iEKW V̂ AW 2 ,

~10!

S ]

]z
1

a

2 DAW 22 i Ĝ AW 25 iEKW
* V̂ AW 1 .

The matricesĜ and V̂ are given by

Gi j 5sE0 Hi j
(0)1 ir d i jz ,

~11!
Vi j 5s Hi j ,

here s52pn0
3r 41/l is a material parameter and the Lat

indicesi andj assume independently the valuesx andy. As is
clear from Eqs.~11! and the symmetry properties of the te
sorsĤ andĤ (0), see the previous subsection, the matrixV̂ is
real and symmetric,Vi j 5Vi j* 5Vji , and the matrixĜ is com-
plex and Hermittian,Gi j 5Gji* . The sign of the introduced

TABLE I. Triplets of basis vectorsx,y,z equivalent to

@001#,@ 1̄1̄0#,@11̄0# ~left column! and @001#,@11̄0#,@110# ~right
column!.

x, y, z x, y, z

@001#, @ 1̄1̄0#, @11̄0# @001#, @11̄0#, @110#

@001#, @110#, @ 1̄10# @001#, @ 1̄10#, @ 1̄1̄0#

@001̄#, @ 1̄10#, @110# @001̄#, @110#, @11̄0#

@001̄#, @11̄0#, @ 1̄1̄0# @001̄#, @ 1̄1̄0#, @ 1̄10#

@100#, @01̄1̄#, @011̄# @100#, @011̄#, @011#

@100#, @011#, @01̄1# @100#, @01̄1#, @01̄1̄#

@ 1̄00#, @01̄1#, @011# @ 1̄00#, @011#, @011̄#

@ 1̄00#, @011̄#, @01̄1̄# @ 1̄00#, @01̄1̄#, @01̄1#

@010#, @ 1̄01̄#, @ 1̄01# @010#, @ 1̄01#, @101#

@010#, @101#, @101̄# @010#, @101̄#, @ 1̄01̄#

@01̄0#, @101̄#, @101# @01̄0#, @101#, @ 1̄01#

@01̄0#, @ 1̄01#, @ 1̄01̄# @01̄0#, @ 1̄01̄#, @101̄#

~a! ~b!
st
i-

.

l
l

parameters is opposite to the sign ofr 41 and may be both
positive and negative; this sign is often unknown in expe
ment.

The left-hand sides of Eqs.~10!, which are the same fo
waves 1 and 2, describe linear propagation in the presenc
optical activity and field-induced birefringence, whereas
right-hand sides are responsible for the nonlinear coupl
The presence of light absorption yields a common expon
tial factor exp(2az/2) in the expressions for the amplitude
AW 1,2. It does not affect the polarization properties and,
required, may be taken into account in the final expressi
for AW 1,2. For simplicity, from now on we omit the term
aAW 1,2 /2 in Eqs.~10!. One can check thereafter that the to
intensity I 05uAW 1u21uAW 2u2 remains constant across the cry
tal. This is an obvious generalization of the known cons
vation law for the scalar two-wave coupling.

Up to this point our treatment of the vectorial two-wav
coupling was not much different from the treatment by oth
authors. Below we are creating a step to unify and simp
the set~10! using the technique of Paulis matrices@35,36#.

2. s representation

The apparatus ofs matrices is an ideal tool to deal wit
2D vectors and matrices. Threes matrices ~operators!,
ŝ1 ,ŝ2 ,ŝ3, which may formally be considered componen

of the vectorial operatorŝW , are defined by the expressions

ŝ15S 0 1

1 0D , ŝ25S 0 2 i

i 0 D , ŝ35S 1 0

0 21D .

~12!

These Hermitian matrices possess a number of remark
mathematical properties. The most fundamental of them
the relation

ŝaŝb5dab1̂1 i dabg ŝg , ~13!

where 1̂is the unit 232 matrix and each of the Greek indice
a, b, andg takes the values 1, 2, and 3~do not mix these up
with the Latin indicesi and j taking the valuesx, y , z!. As
follows from Eq. ~13!, any combination~function! of the s
matrices is reduced to a linear combination of them. In p
ticular, the following equivalent of the known Euler formu
is valid for thes matrices@35,36#,

eiwW •sŴ 51̂ cosw1 i
wW •sŴ

w
sinw, ~14!

wherewW 5(w1 ,w2 ,w3) is a real 3D vector~not to be mixed
up hereafter with vectors in the coordinatex, y, z space! and
w is its length. The definition of the matrix exponent,

exp~Û !51̂1
1

1!
Û1

1

2!
Û21•••, ~15!

is similar to the definition of the scalar exponent exp(U) with
help from the Taylor series.

An arbitrary 232 complex matrixÛ may be expressed b

1̂ andsŴ ,
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3336 PRE 60B. I. STURMAN et al.
Û5c0 1̂1cW•sŴ , ~16!

wherec05 1
2 Tr (Û), cW5 1

2 Tr (sŴ Û), and Tr means the tak
ing of the matrix trace. The derivation of this relation e

ploits Eq.~13! and the fact that Tr (sŴ )50. Actually, Eq.~16!

represents the decomposition of the matrixÛ into the isotro-
pic and the anisotropic parts. In the case whenÛ is a Her-
mitian matrix, the constantc0 and the vector cW
5(c1 ,c2 ,c3) are real quantities.

Using the above mathematical properties, we present
matricesĜ andV̂, given by Eqs.~11!, in the canonical form,

Ĝ5kW •sŴ , V̂5n01̂1nW •sŴ , ~17!

where the real scalar parametern0 and the real vectorsnW

5(n1 ,n2 ,n3) andkW 5(k1 ,k2 ,k3) are given by

n05s~Hxx1Hyy!/2,

n15sHxy , n250, n35s~Hxx2Hyy!/2, ~18!

k15sE0Hxy
(0) , k252r, k35sE0~Hxx

(0)2Hyy
(0)!/2.

As was stated earlier, the parameters is given by s5
2p n0

3 r 41/l.
Correspondingly, Eqs.~10!, with light absorption ne-

glected, attain the final form,

S ]

]z
2 ikW •sŴ D AW 15 iEK~n01nW •sŴ !AW 2 ,

~19!S ]

]z
2 ikW •sŴ D AW 25 iEK* ~n01nW •sŴ !AW 1 .

The information about the linear properties of the lig
waves is now included in the vectorkW , whereas the param
eters nW and n0 characterize the wave coupling. Genera
speaking, the matrixĜ also has an isotropic contributio
sE0 (Hxx

(0)1Hyy
(0)) 1̂ / 2. This contribution gives, however

only a small renormalization of the refractive indexn0,
which usually leads to no significant effects. The presenc
the parametern0 on the right-hand side of Eq.~19! has an
important meaning, namely, that the wave interaction has
isotropic part.

The matrix elementsHi j andHi j
(0) entering Eqs.~18! are

some dimensionless parameters of the order of one, dep
ing on the orientation of the vectorsnW and nW 0 in the XY
plane. For the cases relevant to experiment we calcu
these parameters below in Sec. III. It is remarkable that
ratiosn1 /n3 andk1 /k3 may be different owing only to the
elasto-optic contribution todê (EW ) and a nonzero angle be
tweennW andnW 0. Otherwise, we find from Eqs.~18! that (nW

3kW )50.
The strengths of the effects of optical activity and fie

induced birefringence are determined by the parametersuru
and usE0u, respectively. The value zero ofn2 in Eqs. ~18!
means that the space-charge field does not affect the op
activity.
he

t

of

n
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III. MAIN OPTICAL CONFIGURATIONS

A. Two basic configurations

Most optical configurations relevant to experiment m
be described uniformly with the help of the geometric
scheme shown in Fig. 1~a!. The propagation axisz coincides
with the crystal axis@11̄0#, the x and y axes are directed
along@001# and@ 1̄1̄0#, respectively, and the azimuth angle
in theXYplane are measured from the principal axis@001# in
the direction that is standard for a polar coordinate system
the general case, the anglesz0 andz that define the orienta
tions of the vectorsEW 0 andKW are different.

Figure 1~b! shows another optical configuration that is n
equivalent to the previous one because its basis vectors
not be made coincident with the basis vectors of Fig. 1~a! by
the symmetry transformations of the point group 23 and 43̄m
~see also below in this section!. The photorefractive manifes
tations are generally different for these nonequivalent c
figurations analogously to the difference in photorefract
phenomena in ferroelectrics for opposite directions of
polar axis. Mathematically, the transition from one config
ration to the other is expressed by the multiplication of t
matricesĤ andĤ (0) by a factor of21. It is therefore suffi-
cient to describe the dependencesHi j (z) and Hi j

(0)(z0) for
the basic configuration shown in Fig. 1~a!.

For the optical configuration depicted in Fig. 1~a! the ma-
trix Ĥ (0)(z0), characterizing the change of the optical pe
mittivity owing to the applied uniform field, has a simpl
form,

Hi j
(0)5S 0 sinz0

sinz0 cosz0
D . ~20!

Using Eqs.~18!, we easily calculate the parametersk1,3 as
functions ofz0,

k15sE0 sinz0 , k352
sE0

2
cosz0 . ~21!

The elasto-optic contributions make the angular dep
dences Hi j (z) more complicated in comparison wit
Hi j

(0)(z0). Figure 2 shows these dependences for BTO a
BSO crystals obtained on the basis of the literature d
@24,28#. The nonperturbed dependencesHi j

(0)(z) are also
shown for comparison.

FIG. 1. Two basic nonequivalent configurations for 2W co
pling in cubic crystals.
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It is important that the following symmetry propertie
hold true for the elements of theĤ matrix,

Hxx~z!5Hxx~2z!, Hyy~z!5Hyy~2z!,

Hxy~z!52Hxy~2z!, ~22!

Hi j ~z!52Hi j ~z6p!.

These properties are clearly seen in Fig. 2. They follow, a
may be proven, from the properties of spatial symmetry
the crystals of the point group 23 and 43̄m. As seen from
Eqs. ~18! and Eq.~22!, the functionn1(z) is odd, whereas
the functionsn0(z) andn3(z) are even~see also Fig. 3!.

To gain a preliminary impression of the role of the elas
optic contributions, we look again at Fig. 2. One sees t
these contributions cannot be neglected in the general c
On the other hand, they dominate only in rare cases. We
expect that the elasto-optic contributions are most impor
in the cases when the conventional electro-optic effect f
occasionally to provide the wave coupling. Otherwise,
optoelasticity should give only moderate corrections to
coupling characteristics. Note that for some special orien
tions of the grating vector the elasto-optic contributions tu
to zero~see Figs. 2 and 3, and also below in this section!.

With neglected elasto-optic contributions we haveĤ(z)
5Ĥ (0)(z) and, correspondingly,

n05
s

2
cosz, n15s sinz, n352

s

2
cosz. ~23!

These expressions are useful for rough calculations.

FIG. 2. Dependences of the matrix elementsHi j (z) for BTO ~a!
and BSO~b! crystals; the dashed lines correspond to the nonp
turbed functions.
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B. Particular optical configurations and cases

For experiments with applied electric fields, optical co
figurations are defined by the orientation of the field vec
EW 0 with respect to the crystal axes. Four particular config
rations, which correspond to different values of the anglez0
in Fig. 1~a!, are of particular interest@2,13,24#: ~i! the longi-
tudinal configurationEW 0i@001#, i.e., sinz050; ~ii ! the trans-
versal configurationEW 0'@001#, i.e., cosz050; ~iii ! the diag-
onal configurationEW 0i@ 1̄1̄1#; here z05arctan(A2), i.e., z0
.54.7° or 2125.3°; and~iv! the diagonal configuration
EW 0i@111#; here z052arctan(A2), i.e., z0.254.7° or
125.3°. The above diagonal configurations are similar
not equivalent~see this in more detail in Sec. VIII!.

As we have mentioned, the grating vectorKW is not parallel
to EW 0 in the general case. This is relevant to the studies
wide-angular light-induced scattering~fanning!, which is due
to the recording of a variety of noise gratings by a pum
wave and weak seed waves. For experiments with exte
light beams, as a rule,KW is parallel toEW 0. Keeping in mind
this actual situation we consider four particular cases@see
also Fig. 1~a!#.

~i! The fully longitudinal case, KW iEW 0i@001#, i.e., sinz
5sinz050. In this geometry the elasto-optic contribution
absent,Ĥ5Ĥ (0), and the only nonzero component ofĤ (0) is
Hyy

(0)561. Correspondingly, we have heren056s/2, n1

50, andn357s/2.
~ii ! The fully transversal case, KW iEW 0'@001#, i.e., cosz

5cosz050. Here the diagonal elementsHxx andHyy remain
equal to zero (n05n350) and the elasto-optic contributio
moderately renormalizes the value of the nondiagonal ma
elementsHxy[Hyx as compared withHxy

(0)[Hyx
(0)561.

r-
FIG. 3. Dependencesn0,1,3(z) for BTO ~a! and BSO~b! crys-

tals.
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FIG. 4. Geometrical schemes for the forwa
~a! and the backward~b! optical configurations;
the dashed lines depict the crystal faces.
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~iii ! The fully diagonal cases, KW iEW 0i@ 1̄1̄1# and

KW iEW 0i@111#. Here tanz5tanz056A2; in the diagonal ge-
ometries the elasto-optic contributions are clearly p
nounced~see Figs. 2 and 3!.

C. Equivalent configurations

For any cubic crystal of the point group 23 or 43̄m there
are 12 symmetry transformations that do not affect its m
roscopic properties@35,37,38#. In addition to the trivial unit
transformation these are 180° rotations around three pri
pal crystal axes,6120° rotations around four principal d
agonals, and combinations of these symmetry tranfor
tions. Therefore, we can immediately indicate eleven opt
configurations equivalent to the one shown in Fig. 1~a!.
Table I~a! gives the corresponding triplets of the basisx,y,z
vectors for all equivalent configurations. Any of these triple
may be used as the basis vectors of the Cartesian r
handed coordinate system. The first line of Table I~a! corre-
sponds to the coordinate system shown in Fig. 1~a!. Analo-
gously, Table I~b! lists the optical configurations equivale
to the one shown in Fig. 1~b!. The sets entering Tables I~a!
and I~b! have no overlap. The introduced notion of equiv
lent and nonequivalent optical configurations and the ab
formulated method for their description considerably exte
the capability of our theory.

Using the properties of spatial symmetry, one can ea
prove the identity of the characteristics of the so-called f
ward and backward 2W coupling. This fact is important f
the interpretation of the available data on light-induced sc
tering and the description of schemes of optical genera
based on four-wave mixing. Let us assume, see Fig. 4, th
backward configuration is obtained from an initial fowa
configuration by means of a 180° rotation of the sam
around an arbitraryC-axis lying in theXY-plane. In experi-
ment this axis is parallel~perpendicular! to certain crystal
faces. As seen from Fig. 2 and the first two lines of Ta
I~a!, the backward configuration is equivalent to the forwa
one. Therefore all the angular characteristics of 2W coup
must be the same for the above configurations. This me
means that the forward and backward directions are ph
cally equivalent in harmony with the reciprocity princip
@41#. It is assumed indeed that all of the angles for the f
ward and backward configurations are measured from thx
axis directed along the corresponding principal axis of
crystal @see Figs. 4~a! and 4~b!#.
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In experiment, theC axis is usually perpendicular to th
applied field. In this case, as one can see from Fig. 4,
anglez0 between the applied field and thex axis is different
for the forward and backward configurations. Therefore thz
dependences for 2W mixing should not be the same. T
difference has, however, nothing to do with nonequivalen
of the forward and backward directions. In Sec. VIII w
analyze the orientation characteristics of 2W coupling
forward and backward optical configurations in more de
as applied to experiments with BTO crystals.

IV. LINEAR PROPERTIES OF LIGHT WAVES

Let us first apply Eqs.~19! to describe the light eigen
modes in the absence of wave mixing. Omitting the terms
the right-hand side and putting the wave amplitudeAW
}exp(idk z), we come to the following linear algebraic eige
value problem for each of two waves,

~kW •sŴ !AW 5dk AW . ~24!

Since the operator (kW •sŴ ) is Hermitian, Eq.~24! admits two
real eigenvaluesdk6 , which are nothing but corrections t
the length of the wave vectork for two eigenlightwaves,~1!
and ~–!. One can find directly from Eq.~24! that

dk656k; ~25!

therefore, the distance between the wave surfaces isk
within the paraxial approximation.

The eigenvectorsAW 6 , that correspond to the eigenvalue
dk6 and define the polarization states of the (6) modes, are
given by

AW 65~ 1̂6oW •sŴ !AW 0, ~26!

whereoW 5kW /k is the unit vector alongkW , andAW 0 is an arbi-
trary 2D vector. This relation may be verified algebraica

using the identity (oW •sŴ )2[1̂. The eigenvectorsAW 6 are, as
usual, not defined uniquely which is, however, of no impo
tance for the characterization of the polarization sta
@39,40#. By choosingAx

051, Ay
050 and introducing the unit

polarization vectorseW 65AW 6 /uAW 6u, we obtain the following
explicit relation:
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eW 65
1

A2k S Ak6k3

6
k11 ik2

Ak6k3

D . ~27!

Obviously the polarization vectorseW 6 are orthogonal to each
other,eW 1* •eW 250.

The eigenvectorseW 6 fully describe the polarization state
of the (6) eigenmodes. Generally, these vectors are co
plex, i.e., the eigenwaves are elliptically polarized; the la
axes of the ellipses are mutually orthogonal and the rota
directions are opposite each other~see Fig. 5!. In the absence
of an applied field we havek1,350; this corresponds to th
left and right circularly polarized eigenwaves. If optical a
tivity is neglected, the eigenvectorseW 6 become real; that is
the eigenwaves become linearly polarized. For sufficien
large applied fields,usE0u@uru, the degree of the ellipticity
becomes as small as (r/sE0)2.

From Eqs.~18! and ~27! we obtain the relation

eW 6~2E0!5eW 7* ~E0!, ~28!

which is useful for the analysis of the photorefractive
sponse in the presence of an applied ac field~see Sec. VI!.
This relation means that switching of the applied field resu
in switching of the large and small ellipse axes without a
change of the rotation directions~see Fig. 5!.

The linear differential equation for the wave amplitu
AW (z),

dAW

dz
5 i ~kW •sŴ !AW , ~29!

which follows from Eqs.~19!, allows one to describe th
linear wave propagation for an arbitrary input amplitu
AW (0). Thecorresponding solution is

AW ~z!5ei (kW •sW )zAW ~0![@ 1̂ coskz1 i ~oW •sŴ !sinkz#AW ~0!.
~30!

One sees that the amplitudeAW is generally a superposition o
two eigenmodes. In order to excite only one eigenmode
side the crystal, one should use an elliptically polarized in
wave with the amplitudeAW (0) proportional to one of the
eigenvectorseW 6(E0). If the input amplitudeAW (0) is real
~i.e., the input wave is linearly polarized!, we obtain the re-

FIG. 5. Polarization ellipses for (6) eigenmodes before~a! and
after ~b! switching of an applied field.
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lation AW (2E0 ,z)5AW * (E0 ,z) from Eq. ~30!. This signals a
change of sign of the polarization rotation at each point
the crystal when switching the applied field.

Although Eq. ~30! for the complex amplitudeAW fully
characterizes the evolution of the polarization state along
crystal, it is useful to represent it in an equivalent form
introducing the so-called Stokes parametersj1 ,j2 ,j3
@39,41#. These real parameters, which may be considere
componets of the Stokes vectorjW , are ideally compatible
with the apparatus ofs matrices; they can describe un
formly the polarization properties of totally and partially p
larized waves. The Stokes vectorjW is defined as jW

5Tr(sŴ P̂), wherePab5AaAb* /I 0 is the polarization matrix.

This definition ofjW corresponds to the representation of t

P̂ matrix in the formP̂5 1
2 (1̂1jW•sŴ ). The parametersj1,3

characterize the degree of linear polarization and the par
eter j2 characterizes the degree of ellipticity. For a tota
polarized wave~which is our only interest in this paper! the
length of the Stokes vectorj5ujW u equals one. If, in addition,
this wave is polarized linearly with an inclination anglew to
the x axis we havej15sin 2w, j250, andj35cos 2w.

Using Eqs.~13! and ~30!, we can find the dependence o
the Stokes vector on the propagation coordinate,

jW5jW0 cos 2kz1~jW03oW !sin 2kz12oW ~oW •jW0!sin2kz,
~31!

wherejW05jW (0) is the input Stokes vector. One sees that
z dependence of the polarization state is defined by the
tual orientation of the vectorsjW0 and oW 5kW /k. If jW056oW ,
which corresponds toAW (0)}eW 6 , the polarizion state remain
unchanged during the linear propagation.

V. EXACT SOLUTION OF THE BRAGG-DIFFRACTION
PROBLEM

Equations~19! enable us to easily obtain the exact so
tion for the wave amplitudesAW 1,2 in the case when the grat
ing amplitudeEKW does not depend on the propagation co
dinatez. In particular, we can easily describe the diffractio
efficiency of a spatially uniform grating, as well as the p
larization properties of the diffracted wave without any r
strictions on the crystal thicknessl, the value of the grating
amplitudeuEKW u, and the rotatory powerr @16#. To find the
exact solution, we introduce new variablesBW 65AW 1 exp
(2if0)6AW 2 instead ofAW 1,2, wheref05arg(EKW ) is a constant
phase. As a result, from Eqs.~19! we arrive at two indepen-
dent linear equations forBW 1 andBW 2 . The explicit solution
of these equations is

BW 6~z!5eiĝ6z BW 6~0!, ~32!

whereĝ65kW •sŴ 6uEKW u (n0 1̂1nW •sŴ ). From Eq.~32! and the
definition of BW 6 we obtain the sought solution forAW 1,2,

A1,2~z!5T̂1~z! AW 1,2~0!1e6 if0 T̂2~z! AW 2,1~0!, ~33!

where the transformation matricesT̂6(z) are given by
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T̂6~z!5
1

2
~eiĝ1z6eiĝ2z!. ~34!

To describe the diffraction of wave 1 from the gratin
one should putAW 2(0)50 and calculateAW 2( l ). From Eq.~33!
we get

AW 2~ l !5e2 if0T̂2~ l ! AW 1~0!. ~35!

The phase factor exp(if0) entering this expression affec
neither the diffraction efficiency,h5uAW 2( l )u2/uAW 1(0)u2 nor
the polarization state of the diffracted wave 2. Using E
~14!, the matrixT̂2 may be presented as

T̂25a 1̂1bW •sŴ . ~36!

The scalara and the 3D vectorbW 5(b1 ,b2 ,b3) are given by

a5
1

2
~ei uEKW un0l cosk1l 2e2 i uEKW un0l cosk2l !,

~37!

bW 5
i

2
~oW 1ei uEKW un0l sink1l 2oW 2e2 i uEKW un0l sink2l !,

wherekW 65kW 6uEKW unW andoW 65kW 6 /k6 .
Let jW1(0) be the Stokes vector for input wave 1. The

using Eq.~13! and the definition of the Stokes vector give
in the previous section, the diffraction efficiencyh and the
Stokes vectorjW2( l ) for the diffracted wave 2 may be ex
pressed through the known parametersa andbW as follows:

h5uau21ubW u21jW1~0!•~a bW * 1a* bW 1 i bW * •bW !,

hjW2~ l !5 i bW •bW * 1~ uau22ubW u2! jW1~0!1@a* bW 1 ia* bW •jW1~0!

1bW „bW * •jW1~0!…1c.c.#. ~38!

These equalities give the general solution to the Bra
diffraction problem. This solution incorporates, in particula
the influence of the elasto-optic effect. It includes, actually
great deal of information on the polarization, orientation a
field dependence ofh andjW .

As an application of Eqs.~38! we consider a simple ex
ample relevant to recent ac-experiments with fiberlike B
crystals @12#. Figure 6 shows the normalized dependen
h(E0 ; l ) for the longitudinal optical configuration (KW iEW 0)
and the input linear polarization parallel to thex axis. These
dependences correspond to Eqs.~37! and~38!, and the BTO
parameters given in Table II. One sees that increasinguE0u
leads to a remarkable decrease in the diffraction efficien
The larger the thicknessl, the sharper the peak ofh(E0). For
l 515 mm anduE0u530 kV/cm, which is typical of the
above experiments, the ratioh(0)/h(uE0u) is as high as 30.

The described feature has a clear physical meaning
important implications. Since in the longitudinal geome
only theyy-component of the interaction matrixV̂ is nonzero
@see Eqs.~11! and~20!#, diffraction of an initiallyx-polarized
wave is possible only after a rotation of the polarizati
plane owing to optical activity. However, a sufficiently larg
.

,

-
,
a
d

s

y.

nd

applied field, usE0u@uru, strongly suppresses this rotatio
because it makes the eigenwaves nearly linearly polarize
the x and they directions@see Eq.~27!#. For this reason~i!
the diffraction efficiencyh remains very low and~ii ! the
wave coupling cannot significantly affect the buildup of t
spatial grating. During switching of a square-wave fie
~when usE0u&uru) the recorded grating becomes instan
highly diffractive. In other words, the processes of nonp
turbing recording and efficient readout become separate
time. The most obvious manifestations of this effect are gi
readout pulses during switching of a square-wave ac-field
2W-mixing experiments with fiberlike BTO crystals@12#.

VI. PHOTOREFRACTIVE RESPONSE

To be able to fully describe the photorefractive 2W co
pling, we should supplement Eqs.~19! for the wave ampli-
tudes by relations for the photorefractive response expres
the grating amplitudeEKW throughAW 1,2. Using the conven-
tional one-trap–one-band model for the charge trans
@1–3# and assuming provisionally that the applied field
parallel to the grating vector~i.e., z5z0 in Fig. 1! we have,
within the linear approximation in the contrast of the lig
pattern,

]EK

]t
1

1

td

EM

Eq

Eq1ED2 iE0

EM1ED2 iE0
EK

52
AW 1•AW 2*

I 0

1

td

EM~E01 iED!

EM1ED2 iE0
. ~39!

FIG. 6. Normalized diffraction efficiencyh versusE0 for dif-
ferent crystal thicknessl.

TABLE II. Optical parameters of BTO and BSO crystals.

Parameters BTO BSO BSO
(l5633 nm) (l5514 nm) (l5633 nm)

Refractive 2.58 2.6 2.54
index,n0

Rotatory 6.5 deg/mm 38.6 deg/mm 21.4 deg/m
power,r .1.13 cm21 .6.74 cm21 .3.73 cm21

Electro-optic 4.74 pm/V 4.51 pm/V 4.41 pm/V
coefficient,r 41
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Heretd is the dielectric relaxation time,I 05uAW 1u21uAW 2u2 is
the total intensity, andED , Eq , andEM are the characteristic
fields,

ED5
KkBT

e
, Eq5

eNt

ee0K
, EM5

1

Kmt
, ~40!

wheree is the elementary charge,kB is the Boltzmann con-
stant,T is the absolute temperature,Nt is the effective trap
concentration,ee0 is the dielectric constant, andmt is the
mobility-lifetime product for photoelectrons. The dielectr
relaxation is usually due to the photoconductivity caused
photoexcited electrons. In this case

1

td
5

e

ee0

aI 0

\v
mt, ~41!

where\v is the energy of a light quantum anda is the light
absorption coefficient.

Now we want to generalize Eq.~39! to the case whenKW is
not parallel toEW 0; this is important for the description o
light-induced scattering. To obtain the desired result it
sufficient to replace in Eq.~39! the amplitudeE0 by the
longitudinal ~with respect to KW ) field component, E0

→E0 cosc, where cosc5nW•nW 0 and nW and nW 0 are again the
unit grating and field vectors. Actually,E0 cosc is the driv-
ing field for the grating formation.

Table III gives a representative set of material parame
for BTO and BSO crystals and Table IV lists the correspo
ing numerical estimates for the characteristic fields. It is s
that the following inequalities are fulfilled with a large safe
margin:

Eq@ED ,EM , Eq*uE0u. ~42!

These inequalities define most of the characteristic feat
of the sillenites.

We consider below two important limiting cases for t
photorefractive response: the case of zero applied field

TABLE III. Material parameters for BTO and BSO crystals.

Parameters BTO BSO

Effective trap 231016 cm23 1016 cm23

density,Nt

Mobility-lifetime 231027 cm2/V 531027 cm2/V
product,mt

Dielectric 47 56
constant,«

TABLE IV. Characteristic fields for the data of Table III an
L520 mm.

Characteristic BTO BSO
fields

Eq 250 kV/cm 105 kV/cm
EM 1.5 kV/cm 0.6 kV/cm
ED 0.08 kV/cm 0.08 kV/cm
y

s

rs
-
n

es

nd

the case of a strong square-wave ac field. IfE050, Eq.~39!
gives the simplest expression for the steady-state phot
fractive response

EK52 iẼD~AW 1•AW 2* !/I 0 , ~43!

whereẼD5ED (11ED /Eq)21. This formula shows that the
spatial grating isp/2 shifted with respect to the light fringes
The maximum value ofẼD as a function ofK occurs at
KRd51, whereRd5(ee0kBT/Nt e2)1/2 is the Debye screen
ing length. For the BSO parameters given in Table III w
obtainKmax.1.33105 cm21 andẼD

max.3 kV/cm. A simi-
lar estimate is valid for BTO crystals. The photorefracti
response in the diffusion case is fairly weak.

The case of a square-wave ac field is worth a more
tailed consideration. It is supposed that the oscillation per
of E0(t) is much shorter than the characteristic buildup tim
of the space-charge field which is, in turn, comparable w
td . Therefore, we can perform an averaging of Eq.~39! over
a period of the ac field, treatingEKW as a constant value@2,5#.
An averaging of the left-hand side does not present any
ficulties. Taking into account the inequalities~42! and as-
suming thatuE0 coscu@ED ,EM , we represent first the prod
uct of the three factors beforeEKW as ivKW 1gKW , where

vKW 5
1

td

EM

E0 cosc
, gKW 5

1

td
S EM

2 1EDEM

E0
2 cos2 c

1
EM

Eq
D .

~44!

One sees thatvKW is an odd function ofE0 and, consequently
it disappears after the time averaging. The parametergKW , in
contrast, is an even function ofE0; it is not affected by the
averaging.

To perform the averaging of the right-hand side of E
~39!, we should take into account two facts. First, in view
the inequalitiesuE0u@ED ,EM , the factor (E01 iED)/(EM
1ED2 iE0) in the leading approximation does not depe
on E0 and equalsi. Second, the amplitudesAW 1,2 can change
considerably when switchingE0(t) because of the changin
linear properties of the crystal. This feature has been ov
looked in previous studies. As shown in Sec. IV, switchi
of the applied field transformsAW 1,2 into AW 1,2* if the corre-
sponding input waves are linearly polarized. The average
AW 1•AW 2* in this case is therefore (AW 1•AW 2* )8[Re(AW 1•AW 2* ).
Fortunately, the case of linear input polarization is the m
important for ac experiments with the sillenites. In what fo
lows we restrict ourselves to this case while considering
wave coupling.

Note that the amplitudesAW 1,2 are changing not only be
cause of the linear propagation but also because of diff
tion from the light-induced grating. Therefore, it should
verified afterwards that this diffraction does not eliminate t
propertyAW 1,2(2E0)5AW 1,2* (E0) used for the time averaging
We shall do this next in Sec. VII.

Taking into account the results of the averaging, we arr
at the following expression for the steady-state photorefr
tive response in the presence of a square-wave ac field,

EK52 i uE0 coscuQ~AW 1•AW 2* !8/I 0 , ~45!
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where

Q5
uvKW u

gKW
5S uE0 coscu

Eq
1

ED1EM

uE0 coscu D
21

. ~46!

If Eq@uE0 coscu@EM ,ED , we haveQ@1. In this important
casevKW and gKW are the eigenfrequency and the dampi
constant for a space-charge wave with the wave vectorKW ,
andQ is the quality factor for this wave@42#. This factor, as
one can see from Eqs.~40! and ~46!, depends onK and
uE0 coscu.

Equation~45! clearly shows the advantage of the ac tec
nique. The grating remainsp/2 shifted with respect to the
light fringes and its amplitude becomes much greater tha
the case of zero applied field@2,5#. The enhancement of th
grating amplitude is not only due to a large value ofuE0u but
also due to a large value of the quality factor,Q.1. Figure
7 shows the dependence of the quality~enhancement! factor
Q on uE0 coscu and the grating spacingL52p/K for the
BTO parameters given in Table III. One sees that, for su
ciently large driving field, the optimum grating spacin
Lopt}uE0 coscu. For very high values of the driving field
uE0 coscu2@Eq(EM1ED), the productuE0 coscu Q in Eq. ~45!
saturates at the level ofEq .

Note that large values of the quality~enhancement! factor
Q also have some disadvantages for optical applications.
point is that the field of applicability of Eq.~45! is restricted
by the inequalitym&Q22, where m52uAW 1•AW 2* u/I 0 is the
contrast of the light pattern. For larger values ofm excitation
of higher spatial harmonies, 2KW ,3KW , . . . , aswell as the para-
metric excitation of spatial subharmonics come onto
scene@42–44#. Both of these effects reduce the amplitu
EKW significantly.

VII. TWO-BEAM COUPLING

A. Equations for two-beam coupling

After we have found the relationships between the grat
amplitudeEKW and the light waves amplitudesAW 1,2, we can
formulate a self-consistent set of equations for two-wa
coupling. To simplify this set additionally, we introduce th

FIG. 7. Dependence of the quality~enhancement! factor Q on
the grating spacingL and the value of the driving fielduE0 coscu
for Nt5231016 cm23 andmt5231027 cm2/V.
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normalized vectorial amplitudesaW 1,25AW 1,2/AI 0 instead of
AW 1,2. For these new variables we have the conservation
in the form uaW 1u21uaW 2u251.

In the case of diffusion transport, by combining Eqs.~19!
and ~43! we have, in steady state,

daW 1

dz
1 irŝ2aW 15ẼD ~aW 1•aW 2* !V̂aW 2 ,

~47!

daW 2

dz
1 irŝ2aW 252ẼD~aW 1* •aW 2!V̂aW 1 ,

where the interaction matrixV̂ is given by Eqs.~11!.
In the case of a square-wave ac field, using Eqs.~19! and

~45! we obtain, for steady-state coupling,

daW 1

dz
2 i ~kW •sŴ !aW 15QuE0 coscu~aW 1•aW 2* !8V̂aW 2 ,

~48!

daW 2

dz
2 i ~kW •sŴ !aW 252Q uE0 coscu~aW 1* •aW 2!8V̂aW 1 ,

where the real vectorkW 5(k1 ,k2 ,k3) is given by Eqs.~18!.
Recall that the componentsk1,3 change their sign periodi
cally together withE0(t), whereasuk1,3u,uE0u, andk252r
remain constant.

Let us underline the difference between the conditions
applicability of Eqs.~47! and~48!. The first set of equations
is valid for arbitrary input polarizations of the waves 1 and
and, actually, without any severe restrictions on the cont
m52uaW 1•aW 2* u. The nonlinear effects are, however, fair
weak in the diffusion case. Equations~48! pretend to be valid
only for linear input polarizations and for the contra
2uaW 1•aW 2* u&1/Q2. To justify fully these equations we shoul

verify ~see the previous section! that aW 1,2→aW 1,2* when E0→
2E0. Taking into account that the matrixV̂ does not depend
on E0 and thatk1,3}E0, one can make sure that the nece
sary transformation property is really in harmony with t
structure of Eqs.~48!.

Using Eqs.~48! and the general properties of theV̂ matrix
formulated in subsection 2B one can check that the sc
product (aW 1•aW 2* ), which is supposed to be real at input, r
mains real for anyz. Therefore, the prime in Eqs.~48! can be
omitted. One should not forget, however, that Eqs.~48! can-
not be applied to the case of elliptic input polarizations.

Neither of the vectorial equations~47! and ~48! can be
solved analytically in the general case, in contrast with
case of scalar two-wave coupling. For many important li
iting cases, however, analytical solutions to the vecto
two-wave problem are possible. The character of the
proximations applicable to Eqs.~47! and~48! is quite differ-
ent.

As one can see from Tables I and III, and Eqs.~11!, the
rotatory powerr is typically significantly greater than th
elements of the matrixẼDV̂. This is especially true for BSO
~and also BGO! crystals. Therefore, we can exploit the in
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equalityẼDuVi j /ru!1 in solving Eqs.~47!. Another inequal-
ity relevant to experiment isEDuV̂u l !1; this means that the
crystal is nonlinearly thin.

For the ac case, the inequalityQ uE0 coscV̂u@uru is often
fulfilled. It is the basis for perturbative procedures to so
Eqs.~48!.

B. Diffusion case

1. Approximation of a nonlinearly thin crystal

To exploit the inequalityuV̂uEDl !1, we first exclude the
linear terms responsible for the optical activity from Eq
~47!. This may be done by the following linear transform
tion from aW 1,2 to new amplitudesbW 1,2,

bW 1,2~z!5eirzŝ2aW 1,2~z!. ~49!

Actually, this is analogous to the so-called interaction rep
sentation in quantum mechanics@35,36#. The introduced
transformation is unitary, i.e., it does not change the sc
products; in particular,bW 1* •bW 2[aW 1* •aW 2. Furthermore, it does

not change the boundary conditions becausebW 1,2(0)
5aW 1,2(0). Using Eqs.~13!, ~14!, and~17!, we have instead o
Eqs.~47!,

dbW 1

dz
5ẼD~bW 1•bW 2* !ĥbW 2 ,

~50!

dbW 2

dz
52ẼD~bW 1* •bW 2!ĥbW 1 ,

with ĥ5ĥ(z) given by

ĥ5n01̂1cos 2rz~nW •sŴ !2sin 2rz~n3ŝ12n1ŝ3!. ~51!

Within the first order perturbation theory, we obtain fro
Eqs.~50! the expressions fordbW 1,25bW 1,2( l )2bW 1,2(0),

dbW 15ẼD ~aW 1•aW 2* !Fn0l 1
sin 2r l

2r
~nW •sŴ !

2
sin2 r l

r
~n3ŝ12n1ŝ3!GaW 2 ,

dbW 252ẼD~aW 1* •aW 2!Fn0l 1
sin 2r l

2r
~nW •sŴ !

2
sin2 r l

r
~n3ŝ12n1ŝ3!GaW 1 . ~52!

The amplitudesaW 1,2 on the right-hand side of Eqs.~52! are
supposed to be taken atz50. The smallness of the correc
tions, udbW 1,2u!uaW 1,2u, is guaranteed by the smallness of t
productsẼDn l and ẼDn0l , irrespective of the value ofr l .

From Eqs.~52! we can calculate further the changes in t
wave intensities,
.

-

ar

duaW 1,2u256ẼD ~aW 1•aW 2* !FaW 1* •S n0l 1
sin 2r l

2r
~nW •sŴ !

2
sin2 r l

r
~n3ŝ12n1ŝ3! DaW 2G1c.c. ~53!

This expression is valid for arbitrary input polarizations a
intensity ratio. Usually in 2W-mixing experiments the inp
polarizations are linear and equal for waves 1 and 2. In
case the polarization state is defined by the anglew between
the polarization plane and thex axis and Eq.~53! attains the
form

duaW 1,2u256
m2ẼD

2 Fn0l 1
sin 2r l

2r
~n3 cos 2w1n1 sin 2w!

2
sin2 r l

r
~n3 sin 2w2n1 cos 2w!G , ~54!

wherem is the input value of the contrast. This expression
useful for the diagnosis of different crystals taking into a
count the photoelastic contributions ton0 andnW . It explicitly
shows the effect of the optical activity and of the initial p
larization on the photorefractive gain.

The grating amplitudeEKW remains nearly constant within
the above approximation, irrespective of the value of
productr l . This constant amplitude is given by Eq.~43! with
the input values of the amplitudesAW 1,2. The diffraction effi-
ciency of such a grating is described by the formulas of S
V. Measurements of the diffraction efficiency may be pe
formed by the instantaneous blocking of one of the pu
beams or with the use of auxiliary Bragg-matched read
beams.

2. Resonant approximation

In the case when the crystal is not nonlinearly thin an
additionally,uru@EDuV̂u, one can use another approximatio
based on the introduction of the scalar amplitudes of
optical (6) modes. We explain the idea of this approxim
tion, which may be called resonant, with the help of Fig.
The distance between the wave surfaces, 2r, is much greater
than the broadening of these surfaces owing to the w
coupling. Furthermore, spatial gratings may be recorded o

FIG. 8. Geometrical scheme of wave coupling for weak pho
refractive nonlinearity.
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by wave pairs of the same polarization (1 or 2) because
wave pairs with orthogonal polarizations produce no int
sity modulation. For this reason, diffraction processes wh
change the polarization state are nonresonant~off-Bragg! and
may be neglected.

To perform the resonant approximation, we introduce
scalar amplitudesa6 ~for the moment we omit the subscrip
1,2! by means of

aW 5a1eW 1eirz1a2eW 2e2 irz ~55!

where, in agreement with Eqs.~27!, the unit polarization
vectors areeW 65(1,6 i )/A2. By multiplying Eqs.~47! sca-
larly by eW 6* and omitting quickly oscillating@as exp(2irz)#
nonresonant terms which appear on the right-hand sides
obtain

da16

dz
5ẼDn0~a11a21* 1a12a22* !a26 ,

~56!
da26

dz
52ẼDn0~a11* a211a12* a22!a16 .

This compact system of four coupled equations correspo
to the scheme of wave coupling discussed above. It p
sesses the following integrals~conservation laws!:

ua11u21ua21u25I 1 ,

ua12u21ua22u25I 2 ,
~57!

a11a222a21a125J1 ,

a11a12* 1a21a22* 5J2 .

I 1,2 are real andJ1,2 are complex constants. Consequent
the set of four complex equations~56! has, in fact, only two
degrees of freedom. It is analogous to the equations for
scalar 4W coupling and, in many cases, admits analyt
solutions@45#. In the case when two incident waves have
the same polarizations it is reduced to equations for the
lar two-wave coupling. The fractions of the (1) and (2)
eigenmodes in each of the beams 1 and 2 here remain
changed along the crystal.

Unfortunately, strong nonlinear effects can hardly be
tained in the sillenites in the diffusion case in view of fair
small values of the productsẼD .

C. Ac case

In this case, beam coupling is very strong and the
proximation of a nonlinearly thin crystal usually fails. On th
other hand, the characteristic nonlinear rate here,sQuE0u, is
comparable with~or even larger than! the distance betwee
the wave surfaces, 2k. In this situation the resonant approx
mation also fails. The most useful analytical tool here is
undepleted pump approximation. It is valid when the inte
sity of one beam~let it be beam 1! remains weak throughou
the crystal, i.e., the contrastm remains small. This approxi
mation is applicable to describe the weak signal amplifi
tion, as well as the light-induced scattering~the fanning phe-
nomenon!. Note that the case of an undepleted pump is of
-
h
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the only one that can be considered on the basis of Eqs.~48!

because of the restriction 2uaW 1•aW 2* u&Q22 on the contrast.
To exploit the undepleted pump approximation, it is us

ful to get rid of the linear terms in Eqs.~48! responsible for
the linear propagation. This may be done by the unit
transformation

aW 1,25ei (kW •sŴ )zbW 1,2 ~58!

to new amplitudesbW 1,2, which is analogous to the one pe
formed in the previous subsection. Within the new repres
tation Eqs.~48! attain the form

dbW 1

dz
5~bW 1•bW 2* !8~q01qW •sŴ !bW 2 ,

~59!
dbW 2

dz
52~bW 1•bW 2* !8~q01qW •sŴ !bW 1 ,

whereq05Q uE0 coscun0 is a real constant,

qW 5Q uE0 coscu„oW ~nW •oW !1@nW 2oW ~nW •oW !#cos 2kz

2~nW oW !sin 2kz… ~60!

is a real 3D vector dependent on the propagation coordin
and, as above,oW 5kW /k.

The derivativedbW 2 /dz, being of the second order inbW 1,
may be put equal to zero. Therefore in the first equation
Eqs.~59! we can putbW 2(z)5bW 2(0)5aW 2(0). Since the ampli-
tudesaW 1,2 are normalized to unity anduaW 2u2@uaW 1u2, we have
uaW 2u2.1. Now we recall that the initial Eqs.~48! are valid
only for linearly polarized input waves. This means that t
input amplitudeaW 2(0) is a real unit polarization vector; i
may be specified by the anglew2 measured from thex axis,
aW 2(0)5(cosw2,sinw2).

Multiplying the equation forbW 1 scalarly bybW 2, we arrive
at the following scalar equation forbW 1•bW 2,

d

dz
~bW 1•bW 2!5~bW 1•bW 2!8~q01q1 sin 2w21q3 cos 2w2!.

~61!

In accordance with Eq.~60!, the componentsq1,3 are real
functions of z. The imaginary part of the productbW 1•bW 2
therefore remains equal to zero. This does not mean, h
ever, that the vectorbW 1(z) is real; in general it is complex
i.e., the output polarization of wave 1 is elliptic. Anoth
important feature of Eq.~61! is that the valuesq0,1,3 remain
unchanged during switching of the applied field; this mea
in turn, that the productbW 1•bW 2 does not experience an
changes because of switching.

By integrating Eq.~61!, using Eqs.~18!, and recalling that
bW 1•bW 25aW 1•aW 2, we obtain the following explicit relation,

~aW 1•aW 2!~z!5~aW 1•aW 2!~0!exp~Gz1C1 sin 2kz1C2 sin2kz!,

~62!

where
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G5QuE0 coscuFn01
~nW •kW !

k2
~k1 sin 2w21k3 cos 2w2!G

~63!

and

C15
QuE0 coscu

2k3
„@k2n12k1~nW •kW !#sin 2w21@k2n3

2k3~nW •kW !#cos 2w2…,
~64!

C252
QuE0 coscur

k2
~n3 sin 2w22n1 cos 2w2!.

We see from Eq.~62! that the parameterG, which we call the
increment, primarily defines the process of spatial grow
For G l @1, the theory predicts a very strong amplification
the weak wave 1.

A few general features of the expression~63! for the in-
crement are worth noting.

~i! G consists of an isotropic and an anisotropic contrib
tion. The isotropic contribution (}n0) does not depend on
the polarization of the pump, whereas the anisotropic
(}nW •kW ) depends essentially on this angle; in particular
changes the sign whenw2→w26p/2.

~ii ! The opposite directions of the grating vector cor
spond to the opposite signs of the increment, i.e.,G→2G

whenKW →2KW (z→z6p). This feature is clearly seen from
Eqs.~18!, ~20!, and~22!.

~iii ! The incrementG does not depend on the sign ofE0

andnW 0. This follows from the definition of the vectorkW @see
Eqs.~18!#.

~iv! SinceG is odd inn0 , nW and even inkW , the transition
from the basic configuration shown in Fig. 1~a! to the non-
equivalent configuration of Fig. 1~b! results in the replace
mentG(z,z0)→2G(z,z0).

The contributions to the exponent of Eq.~62! related to
the parametersC1,2 influence the spatial amplification sig
nificantly only for uC1,2u*1. As seen from Eqs.~64!, each of
the parametersC1,2 is the product of the enhancement fact
Q, which typically does not exceed 5–6@46#, and a dimen-
sionless factor dependent on the optical configuration
question and on the polarization anglew2. For many impor-
tant cases the dimensionless factors,C1,2/Q, are much less
than one. For example, we haveuC2u/Q!1 for two limiting
cases,usE0u@uru and usE0u!uru; the first case is relevant t
ac experiments with BTO crystals and the second one m
often be justified for BSO and BGO crystals. The fac
uC1u/Q is small for uru@usE0u; in the opposite limit,uru
!usE0u, it is definitely small forKW iEW 0 because of the small
ness of the elasto-optic contributions ton1,3 ~see also the
next section!.

An important feature of Eq.~62! is that the argument o
the exponent does not depend on the polarization of the w
wave 1; it depends, however, on the pump polarization an
w2. The dependence on the input polarization of wave 1
only expressed by the preexponential factor, (aW 1•aW 2)(0).
The mentioned properties enable us to optimize the polar
tion angles for the case of strong amplificationua1( l )u
.
f

-

e
t

-

n

y
r

ak
le
is

a-

@ua1(0)u. First, we should setaW 1(0)iaW 2(0) to maximize the
preexponent. Second, which is more important, we sho
optimize the incrementG with respect tow2. At the optimum
we have

G5QuE0 coscuF n01
Ak1

21k3
2unW •kW u

k1
21k3

21r2 G ,

sin 2w25
k1 sign~nW •kW !

Ak1
21k3

2
, cos 2w25

k3 sign~nW •kW !

Ak1
21k3

2

~65!

and, correspondingly,

aW 1~ l !•aW 2'uaW 1~0!ueG l . ~66!

Note that the optimum polarization anglew2 does not depend
on the sign ofE0.

The expression~65! for G may further be maximized with
respect to the length of the grating vector,K, and to the
anglesz and z0, specifying the orientations ofKW and EW 0.
Such a maximization is important for practical purposes.
example of the maximization of the increment as applied
BTO crystals is given in the next section. As a general
sertion we can say that the absolute maximum ofG(z,z0 ,K)
indeed corresponds toKW iEW 0 ~to c[z2z050) and to the
lengthK maximizing the enhancement factorQ(uE0u,K) for
a given value ofE0 ~see Fig. 7!. For an arbitrary anglez0 the
maximum ofG(z) generally takes place forcÞ0.

The output value of the productaW 1•aW 2 is definitely an
important measurable characteristic of the spatial amplifi
tion. However, it does not fully describe the output prop
ties of wave 1 because it cannot specify its output inten
and polarization. To find the output value of the vector
amplitudebW 1 we should substitute the value of the produ
bW 1•bW 2* 5aW 1•aW 2, given by Eq.~62!, into the first of Eqs.~59!
and calculate the integral. In the case whenuC1,2u*1, the
analytical calculation is problematic and the polarizati
properties of the amplified wave are rather complicat
Fairly simple results may be obtained forKW iEW 0 and uru
!usE0u, which are relevant to ac experiments with BT
crystals.

In the limit under study, which corresponds tonW ikW , we
put qW 5QuE0unW , C1,250 and G5QuE0u(n01n1 sin 2w2
1n3 cos 2w2). Assuming that exp(Gl)@1, we obtain from
Eqs.~59! and ~62!, for the vectorbW 1( l ),

bW 1~ l !.~bW 1•bW 2!~0!eG l
QuE0u

G
~n01nW •sŴ !bW 2 . ~67!

This expression allows one to calculate the gain factor for
intensity, uaW 1( l )/a1(0)u2[ubW 1( l )/b1(0)u2. It is obviously
given by exp(2Gl) with a preexponential factor~of the order
of 1! depending on the input polarization vectors. The op
mum direction ofbW 1,2(0) coincides with the direction of the

eigenvector of the matrixnW •sŴ , which corresponds to the
large eigenvaluen. The corresponding inclination anglew2
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and the incrementG are given by cos 2w25n3 /n, sin 2w2

5n1 /n, andG5QuE0u(n01n). With these values we have

uaW 1~ l !/a1~0!u25e2QuE0u(n01n) l . ~68!

To describe the output polarization state we should ret
from bW 1( l ) to the amplitudeaW 1( l ) using Eq.~58!. In the case
of arbitrary linear polarizations of waves 1 and 2, the out
wave 1 is elliptically polarized. For the above optimum co
ditions the output polarization state coincides, however, w
the input one.

VIII. APPLICATIONS TO BTO CRYSTALS

Most of the factual data on strong 2W mixing are o
tained in ac experiments with fiberlike BTO crystals. T
amplitude of the square-wave applied field ranges here f
20 to 50 kV/cm and the input pump beams are linearly
larized. Below we apply the results of the previous subs
tion VII C to a description of 2W mixing in BTO crystal
and to an interpretation of the available experimental data
our subsequent treatment we do not suppose thatKW iEW 0.

A. Characteristic features of BTO crystals

Let us make some numerical estimates to define the c
acteristic features of the ac case as applied to BTO crys
Using the data of Table I and settinguE0u530 kV/cm, we
haveusE0u.12 cm21. This value considerably exceeds th
rotatory powerr.6.5 deg/mm.1.13 cm21. Consequently,
we havek1

21k3
2@k2

2[r2; this means that the effect of th
optical activity onG andC1,2 @see Eqs.~63! and ~64!# may
be neglected.

Figure 7 shows that the maximum value ofQ(L) satu-
rates at the levelQ.6 for uE0 coscu*15 kV/cm. This im-
mediately gives a rough estimateG'70 cm21 for the incre-
ment. Such a high value means the possibility of a v
strong spatial amplification of proper light waves.

As seen from Fig. 7, the optimum grating spacingL is
directly proportional to the absolute value of the driving fie
uE0 coscu. For uE0 coscu530 kV/cm we have Lopt
.30 mm, which corresponds to the interaction angleu
~taken in air! of about 1.2°. Such small values of the cha
acteristic angles justify the used paraxial approximation w
a large margin of safety.

Using the results of subsection VII C and neglecting o
tical activity, we can find the optimum configuration for 2W
coupling in BTO crystals. By settingz5z0(c50), L
5Lopt , andr50 in Eq.~65!, and recalling the definition o
k1,3 andn0,1,3, we obtain, for the incrementG as a function
of z0,

G5suE0uQmax~ uE0u! f ~z0!, ~69!

f 50.5~Hxx1Hyy!1usinz0Hxy20.25 cosz0~Hxx

2Hyy!u/Asin2z010.25 cos2 z0.

Figure 9 shows the dependencef (z0) calculated for the data
of Fig. 2~a! for Hi j (z0). With the elasto-optic contribution
omitted ~the dashed line! we have the maximum valuef max

5(A311/A3)/2.1.155 for z05arccos(1/A3).54.7°,
n

t
-
h

m
-

c-

In

r-
ls.

y

h

-

which corresponds to the diagonal configuration. This res
coincides with the prediction made in Ref.@25#. Note that we
have f 51 for both the longitudinal (z050) and transversa
(z05p/2) configurations; this means that the gain inG(z0)
attained for the diagonal geometry is quite moderate~about
15%!. With the elasto-optic contributions taken into accou
~the solid line!, the function f (z0) peaks again atz0

.54.7°; here we havef max.1.4. Therefore, the gain in the
increment for the diagonal geometry becomes as high
40% in comparison with the longitudinal and transversal
ometries. The absolute maximum of the increment for BT
crystals andE0530 kV/cm may be evaluated asGmax

.100 cm21.
Now we estimate the effect of the parametersC1,2 in Eq.

~62! on the spatial amplification in BTO crystals. Using Eq
~64!, the inequalityuru!usE0u, and neglecting the elasto
optic contributions, one can find thatuC2u&Qucoscr/sE0u;
for Q.6 and ur/sE0u50.1 it gives uC2u&0.6. In other
words, the effect of the parameterC2 is fairly small. For the
parameterC1 we have within the same approximation,

C1.
Q

8
ucoscusinc

~cosz0 sin 2w212 sinz0 cos 2w2!

~sin2 z010.25 cos2 z0!3/2
.

~70!

This expression shows that the maximum effect ofC1 takes
place forusin 2cu'1, i.e., for large angles betweenKW andEW 0.
This case is not actually relevant for the amplification
weak signals but it is important for the description of ligh
induced scattering. Furthermore, one can find thatuC1u
&Qusin 2cu/8 for the transversal and diagonal configuratio
irrespective of the polarizaton anglew2. This means that the
spatial oscillations in Eq.~62! related toC1 are of minor
importance as compared with the strong exponential gro
with the rateG. For the longitudinal configuration (z050)
andw25p/4 we have the maximum value,C1.Q sin 2c/2;
it may be practically as high as~2–3!. The effect of the
spatial oscillations superposed on the exponential spa
growth is pronounced in this case. Below we shall use
~70! and the above estimates as applied to particular cas

FIG. 9. Dependencef (z0) for BTO crystals; the dashed line i
plotted with neglected elasto-optic contributions.
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B. General observations on the angular dependence of the
increment

Our next aim is to describe the dependence of the in
ment G on the propagation direction of a weak light bea
and on the polarization of the pump beam as applied to
experimental conditions. To attain this goal, it is conveni
to use the polar interaction angleu5luKW u/2p instead ofuKW u
and to measure all of the azimuth angles not from thex axis
but from the horizontal parallel to the applied field; th
means that, instead of the anglesz andw2 ~see Fig. 4!, we
use the anglesc5z2z0 andwp5w22z0.

As is seen from Eq.~63!, the angular dependence of th
increment originates from two different sources, name
from the productQucoscu and from the square bracket. Th
quality factorQ @see Eq.~46!#, depends onu and c. It is
remarkable that the functionQ(u,c) has nothing to do with
the choice of the optical configuration; it is defined by t
material parameters and the amplitudeuE0u. Figure 10 shows
the angular dependence ofQucoscu for the representative
parameters of BTO given in Tables I and III, anduE0u
530 kV/cm. It is clearly seen that this dependence is sy
metric about the horizontal and the vertical directions, an
is characterized by two pronounced maximums. Note tha
increase ofuE0u does not give any real gain in the maximu
enhancement factor starting from'10 kV/cm; in harmony
with Fig. 7 it results mainly in a decrease of the optimu
interaction angleu. The second factor@the square bracket in
Eq. ~63!# does not depend on the polar angleu; its depen-
dence onc andwp is defined by the optical configuration i
question. After the above preliminaries we turn to the tre
ment of particular optical configurations that correspond
different values of the anglez0 in Fig. 1~a!.

C. Longitudinal configuration, E¢ 0i†001‡

In this simplest case we putz050,c5z,wp5w2, andk1
50. Using Eqs.~18! and ~63!, we obtain

G5suE0 coscuQ~Hxx cos2 wp1Hyy sin2wp!. ~71!

The dependencesHxx(z),Hyy(z) are given in Fig. 2. If the
elasto-optic contribution is omitted, Eq.~71! simplifies to

FIG. 10. Contour lines of the productQ(lKW /2p)ucoscu for
uE0u530 kV/cm. The chosen parameters of the BTO crystals
the same as for Fig. 7.
e-

e
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G5suE0 coscuQ sin2 wp cosc. ~72!

In accordance with this expression, the optimum polarizat
angle iswp5p/2 ~the vertical polarization! and the depen-
dence on the azimuth anglec is characterized by a maxi
mum atc50 and by a minimum atc5p. For wp50 ~the
horizontal polarization! we haveG50, which is no exponen-
tial amplification.

Figures 11~a! and 11~b! show the dependencesG(u,c)
plotted forwp5p/2 and 0, respectively, on the basis of E
~71!. In the first case, taking into account the elasto-op
effect does not produce any substantional changes as c
pared with the result given by Eq.~72!; the maximum value
of G here is about 75 cm21. For wp50 the elasto-optic
effect removes the prohibition on wave coupling; forcÞ0
the incrementG takes positive but relatively small value
Note finally that the parameterC1 given by Eq.~70! turns to
zero forwp5p/2 and 0.

The dependenceG(u,c) for the backward configuration
obtained by a 180° rotation of the sample around the vert
@110# axis~see Fig. 4!, may be obtained by a 180° rotation o
the spatial distributions shown in Fig. 11 around the verti
axis. This follows from the general observation of Sec.
that the characteristics of 2W coupling remain the same
any backward configuration, provided that all of the ang
are measured from the corresponding principal axis.

e

FIG. 11. Contour lines of the incrementG(lKW /2p)5const.0
for the longitudinal configuration; the cases~a! and ~b! correspond
to the vertical (wp5p/2) and horizontal (wp50) polarizations of
the pump wave 2.
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D. Transversal configuration, E¢ 0'†001‡

In this case we setz05p/2, z5c1p/2, w25wp1p/2
and, correspondingly,k15sE0 , k350. Using Eq.~63! we
get

G5suE0 coscuQ~n02n1 sin 2wp!, ~73!

wheren0,1 are given by Eqs.~18! and Fig. 3. With neglected
elasto-optic contributions we obtain, instead of Eq.~73!,

G52
1

2
suE0 coscuQ~sinc12 cosc sin 2wp!. ~74!

For wp50,p/2 the above expressions forG yield two sym-
metric lobes in quadrants III and IV@see Fig. 12~a!#. The
optimum conditions for the spatial amplification correspo
to wp56p/4 andc520.5p7arccos(2/A5).(290764)°
see Figs. 12~b! and 12~c!. The parameterC1 is zero in this
particular case. A 180° rotation of the sample around
vertical @001# axis here does not change the angular dep
denceG(u,c) because the forward and backward configu
tions are physically equivalent.

E. Diagonal configurations

Let us first consider the diagonal configuratio
EW 0i@ 1̄1̄1#. In this case we have@see also Fig. 4~a!# z5c
1z0 , w25wp1z0 with z05arctan(A2).54.7° and, corre-
spondingly, k15A2sE0 /A3, k352sE0/2A3. Using Eq.
~63! we obtain, after simple calculations,

G [1̄1̄1]5
1

3
uE0 coscuQ@3n01~2A2n12n3!cos 2wp#.

~75!

With neglected elasto-optic contributions ton0,1,3(z) this re-
lation is replaced by

G [1̄1̄1]5
1

2A3
suE0 coscuQ@~cosc2A2 sinc!

1~3 cosc1A2 sinc!cos 2wp#. ~76!

For wp50 ~the horizontal polarization! the incrementG [1̄1̄1]
as a function of c peaks at c50; here, G [1̄1̄1]

52suE0uQ/A3. This case is optimum for the spatial amp
fication.

Figure 13~a! shows the dependenceG [1̄1̄1](u,c) obtained
for wp50 from Eq.~75!. It gives qualitatively the same re
sult as the simplified Eq.~76!. The angular distribution here
has the form of a lobe pointed in the horizontal directio
The absolute maximum of the increment,G [1̄1̄1]
.100 cm21, is attained just in this case.

For wp56p/2 ~the vertical polarization! the square
bracket in Eq.~76! peaks atc5arctan(A2)2p.2125.3°.
Since the productQucoscu decreases gradually with increa
ing usincu, the maximum ofG(c) shifts slightly fromc5
2125.3° towards zero. Note thatC150 for wp50,p/2.

Figure 13~b! displays the angular dependence of the
crementG [1̄1̄1] calculated from Eq.~75!. This dependence is
not much different from the one predicted by Eq.~76!. The
e
n-
-

,

.

-

angular distribution here has the form of a main lobe, si
ated in quadrant III, and a secondary one lying in quadr
IV.

Now we turn to the diagonal configurationEW 0i@111#. In
this case we should putz5c1z0 , w25wp1z0 with z05
2arctan(A2).254.7°. Using Eq.~65! and the symmetry
properties of the functionsn0,1,3 mentioned in Sec. III, one
easily finds that G [111](c,wp ,u)5G [1̄1̄1](2c,wp ,u). In
other words, the angular distributions of the increment

@ 1̄1̄1# and@111# configurations transform into each other b
a 180° rotation around the horizontal axis. In particular,
making this transformation, one can easily get from Fig.

FIG. 12. Contour linesG(lKW /2p)5const.0 for the transversal
configuration; the cases~a!, ~b!, and ~c! correspond towp50,p/2;
wp5p/4; andwp52p/4, respectively.
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the angular distributions ofG [111](c,u) for wp50 and
6p/2. In accordance with the statements in Sec. III,
angular distributions forG [1̄1̄1] and G [111] look similar but
they are not equivalent.

Finally, we consider the angular dependence of the inc
ment for the backward configuration obtained from the di
onal @ 1̄1̄1# configuration by a 180° rotation around the ve
tical axis@see Fig. 4~b!#. For this backward configuration w
havez05p2arctan(A2) and another choice of the exper
mental variablesc and wp : z5c1p2arctan(A2), w2

5wp1p2arctan(A2). The problem is to find the relation
ship between the incrementGB(c,wp) for the backward ge-
ometry and the incrementG(c,wp) for the initial forward
configuration. Using Eq.~63!, the definition ofn0 ,nW ,kW , and
the properties of symmetry given by Eqs.~22!, we easily
obtain

GB~c,wp ,u!52G~2c,2wp ,u!. ~77!

In what follows from the above relation, the dependen
GB(c,u) for wp50,p/2 may be obtained from the corre
sponding dependencesG(c,u) @see Figs. 13~a! and 13~b! by
a 180° rotation around the vertical axis. The same rela
~77! connects the increments for the initial@111# configura-
tion and the corresponding backward one.

FIG. 13. Contour linesG(lKW /2p)5const.0 for the diagonal

configuration@ 1̄1̄1#; the cases~a! and~b! correspond towp50 and
wp5p/2.
e
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IX. COMPARISON WITH EXPERIMENT

To compare the results of the previous section with
periment, we carried out measurements of light scatter
patterns in BTO crystals for the longitudinal, transversal, a
diagonal configurations. The experimental setup was sim
to the one described in Refs.@10,30#. A laser beam of a
wavelengthl5632.8 nm and a diameter.1.2 mm was in-
cident normally onto the sample. The corresponding 2D d
tribution of scattered light was recorded in the far field w
a CCD camera. Typical pump intensity and ac frequen
were .0.8 W/cm2 and 50 Hz, respectively. The amplitud
of the square-wave ac field,uE0u, ranged from 10 to 20 kV/
cm. The moderate values ofuE0u stem from the dimensions
of the BTO samples used: 435.9325.3,4.332.5325.9, and
3.334.339.9 mm3 for L, T, andD configurations, respec
tively. The first numbers are the interelectrode distances
the last ones are the crystal thicknesses,l. Unfortunately,
samples with l5427 mm and with the interelectrode dis
tance of 223 mm, which seem to be the best for fannin
experiments, were not available for us.

Figures 14~a! and 14~b! show the scattering patterns ob
tained in the longitudinal configuration (EW 0i@001#) for the
polarization anglewp590° andwp50, respectively. These
distributions have to be considered in conjunction with Fi
11~a! and 11~b! for the incrementG(u,c). In agreement with
theory, we have a one-lobe structure for the first and a tw
lobe structure for the second case. Orientations of the lo
also meet the theoretical predictions. Note that the far ri
parts of the scattering lobes in Fig. 14 are cut by the cry
edge.

The light patterns presented in Fig. 15 are observed
the transversal configuration,EW 0'@001#. Two similar two-
lobe patterns~a! and~b! correspond to the polarization ang

FIG. 14. Light-induced scattering in the longitudinal optic
configuration. The patterns~a! and ~b! correspond to the vertica
and horizontal pump polarization, respectively.
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wp50 andwp590°, respectively. They are in good qualit
tive agreement with the angular dependence of the increm
given by Fig. 12~a!. Forwp545° andwp5245° experiment
gives one-lobe distribution of scattered light@see Figs. 15~c!
and 15~d!#. Again, this is in harmony with the angular dis
tribution of G shown in Figs. 12~b! and 12~c!.

Last, Fig. 16 shows three different scattering patterns
the diagonal configuration,EW 0i@ 1̄1̄1#. The strongest scatter
ing is observed for the horizontal polarization,wp50 @see
Fig. 16~a!#. In accordance with the theoretical Fig. 13~a!, we
have here one lobe of scattered light pointing at the horiz

FIG. 15. Scattering patterns for the transversal optical confi
ration. The cases~a!, ~b!, ~c!, and ~d! correspond to the pump po
larization anglewp equal 0°, 90°, 45°, and245° to the horizontal.
nt

r

-

tal directioncp50. Switching the pump polarization from
horizontal (wp50) to vertical (w590°) dramatically
changes the scattering pattern@see Fig. 16~b!#. The only lobe
here points in the directionc.220°, which corresponds to
the angular dependence of the increment given by Fig. 13~b!.
The light distribution of Fig. 16~c! is obtained forwp590°
after a 180° rotation of the sample around the vertical a
In accordance with theory, it is not really different from th
distribution obtained by a 180° rotation of Fig. 16~b! around
the vertical.

A clear feature of the light distributions shown in Figs. 1
and 16 is the separation of the scattering lobe~s! from the
pump spot. This is especially pronounced for the cases
strong scattering@see Figs. 15~c! and 15~d! and 16~a!–16~c!#,
when the role of distortions of the pump spot is diminishe
This feature is in line with theory which predicts decreasi
scattering for sufficiently small scattering angles.

One more obvious point of qualitative agreement betwe
theory and experiment is the polarization dependence of
scattering intensity for each of the above configurations. T
agreement may be established by comparing the effec
light polarization on the brightness of the lobes and the eff
of the same polarization on the value of the incrementG ~see
Figs. 11–16!.

Therefore, we have found good qualitative agreement
tween the main theoretical predictions for BTO crystals a
experiment. A more detailed quantitative comparison
tween the theory and the observations is beyond the scop
this paper.

X. DISCUSSION

Let us summarize and discuss first the main merits of
analytical approach used as compared with the method

-

FIG. 16. Scattering distributions for the diagonal optical co

figuration EW 0i@ 1̄1̄1#. Patterns~a! and ~b! are obtained forwp50
andwp590°; pattern~c! is also obtained for the vertical polariza
tion (wp590°), but the sample has been rotated prior by 18
around the vertical axis.
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the preceding theoretical considerations. The develo
theory is distinguished by a high level of generality. It cove
a large variety of optical configurations relevant to expe
ment, it incorporates flexibly the accumulated results on
elasto-optic contributions to the photorefractive response
includes the effects of optical activity and field-induced
refringence, and last, it allows one to describe the effec
enhancement of the space-charge field.

In spite of its generality, the theory remains fairly simp
in form. Its main relations are highly informative but n
unwieldy. Such a compromise is due to the extensive us
the properties of spatial symmetry, the use of a numbe
phenomenological characteristics known from experime
and the introduction of the formalism of Pauli matrices.

The factors of different physical meaning are well sep
rated in the theoretical expressions. Such a block struc
makes the theory flexible and adjustable to the use of pie
of information extracted from different sources. For e
ample, the angular dependence of the incrementG is defined
by the product of the enhancement factorQ(u,c) ~which is
relevant to the known effects of excitation of space-cha
waves@42#! and an azimuth factor dependent on the cho
of the optical configuration and on the pump polarizatio
Realization of this fact allows one to connect the charac
istics of different phenomena, to see the physical limitatio
on the light contrast, and to optimize the conditions for wa
coupling.

The analytical expressions are highly useful for the int
duction of various approximations: the undepleted pump
proximations, the approximation of weak and strong opti
activity, etc. An extensive analysis of particular and limitin
cases is beyond the scope of this paper. We can indic
however, some promising directions for application and g
eralization of the obtained results.

~i! Analysis of the rate of spatial amplification in the pre
ence of a large dc field does not present any serious diffi
ties. It is of interest in view of early@47# and recent@48#
experiments with BSO crystals.

~ii ! The results obtained in Sec. VII within the undeplet
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pump approximation can easily be generalized to the cas
circular and elliptic input polarizations. It is remarkable th
the exponential amplification here can be free of the spa
oscillations.

~iii ! The rate of spatial amplificationG can be optimized
with respect to the pump polarization and orientation of
applied ac field for an arbitrary value of the rotatory pow
which is important for BSO and BGO crystals.

~iv! The effect of nonexponential spatial amplificatio
pronounced in BSO crystals, may be investigated in deta

~v! The effect of wave coupling on the subharmonic ge
eration in BSO and BTO crystals is worthy of a spec
study. This effect is clearly seen in ac experiments@49#.

~vi! Vectorial four-wave processes of the phase conju
tion and of the parametric scattering, as well as the surf
wave formation in fiberlike BTO crystals, are also a ch
lenge for the analytical theory.

XI. CONCLUSIONS

An analytical theory of the photorefractive vectorial wa
coupling is developed for cubic crystals of the point gro
23 and 4̄3m. In a unified manner the theory incorporates t
effects of optical activity and field-induced birefringence, t
influence of optoelasticity, and the enhancement of the p
torefractive response by an ac field. It is applicable to a w
range of optical configurations and light polarizations, a
adjustable to the introduction of various approximations. A
plications of the theory are given to the analysis of the p
larization and orientation characteristics of 2W coupling
BTO crystals. A good qualitative agreement with experime
tal data for BTO crystals is demonstrated. The prospects
further development and application of the obtained res
are discussed.
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